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pdynmc: A Package for Estimating Linear
Dynamic Panel Data Models Based on
Nonlinear Moment Conditions
by Markus Fritsch, Andrew Adrian Yu Pua and Joachim Schnurbus

Abstract This paper introduces pdynmc, an R package that provides users sufficient flexibility
and precise control over the estimation and inference in linear dynamic panel data models. The
package primarily allows for the inclusion of nonlinear moment conditions and the use of iterated
GMM; additionally, visualizations for data structure and estimation results are provided. The current
implementation reflects recent developments in literature, uses sensible argument defaults, and
aligns commercial and noncommercial estimation commands. Since the understanding of the model
assumptions is vital for setting up plausible estimation routines, we provide a broad introduction
of linear dynamic panel data models directed towards practitioners before concisely describing the
functionality available in pdynmc regarding instrument type, covariate type, estimation methodology,
and general configuration. We then demonstrate the functionality by revisiting the popular firm-level
dataset of Arellano and Bond (1991).

Introduction

This paper introduces the contributed package pdynmc (Fritsch et al., 2020) – a unified framework
for estimating linear dynamic panel data models based on linear and nonlinear moment conditions
(Ahn and Schmidt, 1995). Our implementation of the commands in pdynmc allows the user to exert
precise control over the available functionality, reflects recent developments in literature, uses sensible
argument defaults, aligns commercial and noncommercial estimation commands, and provides
visualizations of data structure and estimation results. Additionally, this paper provides a concise
introduction into linear dynamic panel data models directed towards the practitioner, describes the
functionality available in pdynmc, and walks the reader through estimation of linear dynamic panel
data models by replicating the analysis in Arellano and Bond (1991).

Practitioners have a variety of recent packages that enable linear dynamic panel data modeling
meant for a fixed number of time periods. In particular, contributed R packages such as OrthoPanels
(Pickup et al., 2017), plm (Croissant and Millo, 2019), and panelvar (Sigmund and Ferstl, 2019) have
considerably enlarged the set of noncommercial routines available. All of these packages implement
some default routines for estimating common parameters in linear dynamic panel data models.
OrthoPanels implements a likelihood-based orthogonal reparameterization procedure for first-order
autoregressive linear panel data models with strictly exogenous covariates. plm implements one-step
and two-step GMM-based procedures for pth-order autoregressive linear panel data models. panelvar
implements iterated (or “m-step”, compare Sigmund and Ferstl, 2019) GMM procedures for pth-order
vector autoregessive linear panel data models. For the latter two packages, linear moment conditions
are used to identify common parameters.

Additional functionality of our contributed package pdynmc includes nonlinear moment con-
ditions which are generally not available across standard GMM estimation routines. To the best of
our knowledge, there is currently only the xtdpdgmm-implementation provided by (Kripfganz, 2019)
for the commercial statistical software Stata (StataCorp, 2015). The current implementation in Stata
restricts accessibility to the routine as it requires a recent Stata version (version 13 or higher). Another
key estimation option provided by pdynmc is iterated GMM; Hansen and Lee (2021) recently outlined
the merits of the technique and developed the theory under potential misspecification of moment
conditions. The availability of iterated GMM for dynamic panels may help to apply the results found
in, for example, Hwang and Sun (2018). Visualizations of the estimation results of iterated GMM are
also included.

The structure of the paper is as follows. Section Framework and methodology briefly sketches
the linear dynamic panel data model, states underlying assumptions frequently used in literature,
and describes moment conditions arising from different sets of model assumptions. Section R im-
plementation covers details on the arguments of the model fitting function pdynmc and connects the
description with the estimation methodology. Section Empirical example illustrates the estimation of
linear dynamic panel data models with pdynmc for the data set of Arellano and Bond (1991), while
Section Conclusion concludes.
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Framework and methodology

Linear dynamic panel data models account for dynamics and unobserved individual-specific hetero-
geneity. Due to the presence of lagged dependent variables, applying ordinary least squares including
individual-specific dummy variables is inconsistent (see, e.g., Hsiao, 2014). A suitable alternative for
obtaining parameter estimates of linear dynamic panel data models is deriving moment conditions (or
population orthogonality conditions) from the model assumptions. The moment conditions may be
linear (Anderson and Hsiao, 1982; Holtz-Eakin et al., 1988; Arellano and Bover, 1995) or nonlinear
(Ahn and Schmidt, 1995) in parameters and determine the natural instruments available for estimation.
Usually, the number of moment conditions exceeds the number of parameters and moment conditions
need to be aggregated appropriately. This can be achieved by the generalized method of moments
(GMM), where weighted linear combinations of moment conditions are employed to obtain parameter
estimates.

Theoretical results and evidence from Monte Carlo simulations in literature suggest that incor-
porating nonlinear (quadratic) moment conditions proposed by Ahn and Schmidt (1995) is valuable
for identification: For example, when the lag parameter exhibits high persistence, linear moment
conditions fail to identify the model parameters, while quadratic moment conditions can still provide
identification (Bun and Kleibergen, 2021; Bun and Sarafidis, 2015; Gørgens et al., 2019; Pua et al.,
2019a,b). Note that the quadratic moment conditions are immediate by-products of imposing standard
assumptions, which are the basis of the Arellano and Bond (1991) estimator – the most popular default
routine in dynamic panel data estimation.

Since the moment conditions employed in GMM estimation of linear dynamic panel data models
are derived from model assumptions, a basic understanding of these assumptions is vital for setting
up a plausible estimation routine. We briefly review the assumptions implied when using particular
moment conditions in estimation below and add to the exposition in the plm vignette (Croissant and
Millo, 2019), where the function pgmm is used to estimate linear dynamic panel data models. For further
reading on the methodology, we suggest Fritsch (2019).

Linear dynamic panel data model

For a given data set with cross section dimension n and time series dimension T, consider a linear
dynamic panel data model of the form:

yi,t = αyi,t−1 + βxi,t + ui,t, i = 1, . . . , n; t = 2, . . . , T, (1)

ui,t = ηi + εi,t. (2)

Variables yi,t and yi,t−1 denote the dependent variable and its lag, α is the lag parameter, and xi,t is
a single covariate with corresponding slope coefficient β. The second equation separates the com-
posite error term ui,t into an unobserved individual-specific effect ηi and an idiosyncratic remainder
component εi,t.

Combining Equations (1) and (2) yields the single equation form

yi,t = αyi,t−1 + βxi,t + ηi + εi,t. (3)

We only include one lag of the dependent variable, one covariate, and omit unobserved time-
specific effects in this section for simplicity of exposition and notational convenience. Extending the
representation is straightforward and pdynmc can also accommodate AR(p) models and time effects.
The initial time period is denoted by t = 1.

The unobserved individual-specific effects ηi may be eliminated from Equation (3) by taking first
differences:

∆yi,t = α∆yi,t−1 + β∆xi,t + ∆εi,t. (4)

Since the first difference of the lagged dependent variable ∆yi,t−1 = yi,t−1 − yi,t−2 and the first
difference of the idiosyncratic remainder component ∆εi,t = εi,t − εi,t−1 are not orthogonal, ordinary
least squares estimation of Equation (4) is inconsistent. Linear dynamic panel data models are usually
estimated by GMM, where corresponding moment conditions are derived from model assumptions.
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Standard assumptions and associated moment conditions

Researchers have focused on the following standard assumptions, henceforth StA, (see Ahn and
Schmidt, 1995):

The data are independently distributed across i, (5)

E(ηi) = 0, i = 1, ..., n,

E(εi,t) = 0, i = 1, ..., n, t = 2, ..., T,

E(εi,t · ηi) = 0, i = 1, ..., n, t = 2, ..., T,

E(εi,t · εi,s) = 0, i = 1, ..., n, t 6= s,

E(yi,1 · εi,t) = 0, i = 1, ..., n, t = 2, ..., T,

n→ ∞, while T is fixed, such that
T
n
→ 0.

We assume that StA hold for the rest of this paper.

Under StA, Holtz-Eakin et al. (1988) (henceforth HNR) propose the moment conditions

E(yi,s · ∆ui,t) = 0, t = 3, . . . , T; s = 1, . . . , t− 2. (6)

Equation (6) provides 0.5(T − 1)(T − 2) moment conditions. Equivalent moment conditions can
be derived from the covariate xi,t – depending on its correlation with the idiosyncratic remainder
component εi,t. Endogenous, predetermined, and (strictly) exogenous covariates provide the following
linear moment conditions, respectively:

E(xi,s · ∆ui,t) = 0, t = 3, . . . , T, where (7)

s = 1, . . . , t− 2, for endogenous x,

s = 1, . . . , t− 1, for predetermined x,

s = 1, . . . , T, for strictly exogenous x.

After solving Equation (1) for ui,t and inserting this as ∆ui,t = ui,t − ui,t−1, it is apparent that the HNR
moment conditions are linear in parameters (α and β). In literature, the HNR moment conditions also
appear as “moment conditions with instruments in levels” (w.r.t. yi,s, xi,s) and “moment conditions
from equations in differences” (w.r.t. ∆ui,t).

Ahn and Schmidt (1995) (henceforth AS) have shown that under StA the following T− 3 additional
moment conditions hold:

E(ui,T · ∆ui,t−1) = 0, t = 4, . . . , T. (8)

These moment conditions are nonlinear in parameters (quadratic in α and β).

Extended assumptions and associated moment conditions

Another set of moment conditions, beyond those implied by StA, that is popular in theoretical and
applied research is derived from the assumption

E(∆yi,t · ηi) = 0, i = 1, . . . , n. (9)

This expression requires that the dependent variable and the unobserved individual-specific effects
are constantly correlated over time for each individual and has thus been called “constant correlated
effects” (Bun and Sarafidis, 2015). This assumption is also called “effect stationarity” (Kiviet, 2007) or
“mean stationarity” (Arellano, 2003).

From this assumption, Arellano and Bover (1995) derive T − 2 additional moment conditions
(henceforth ABov):

E(∆yi,t−1 · ui,t) = 0, t = 3, . . . , T. (10)

By rewriting these moment conditions, it can be shown that the ABov moment conditions encompass
the nonlinear AS moment conditions (for a derivation see Fritsch, 2019).
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Depending on the assumptions about xi,t, additional ABov moment conditions can be derived:

E(∆xi,v · ui,t) = 0, where

v = t− 1; t = 3, . . . T, for x endogenous,

v = t; t = 2, . . . , T, for x strictly exogenous or x predetermined.

Deviations from the assumption are required to be unsystematic over both, the cross section
and the time series dimension (see Section 6.5 in Arellano, 2003, which also provides an empirically
relevant example). Employing the constant correlated effects assumption implicitly constrains the
relationship between ∆xi,t and ηi (see Blundell et al., 2001). If the statistician is not willing to impose
this restriction, nonlinear AS moment conditions can be used instead.

R implementation

Similar to function pgmm in the package plm, pdynmc provides one-step and two-step closed form
GMM estimators and standard specification testing such as overidentifying restrictions tests, serial
correlation tests, and Wald tests. These features are shared by other packages implemented in Gauss,
Ox (Doornik et al., 2012), R, and Stata. We provide options to match results from other statistical
software estimation routines. In contrast to OrthoPanels and plm, pdynmc does not include a formula
interface to allow the user to exert full control over all functionality.

GMM estimation, inference, and testing

We provide one-step, two-step, and iterated estimation for the coefficients. The weighting matrix of
the moment conditions plays a prominent role in estimation (Arellano and Bond, 1991; Blundell et al.,
2001; Kripfganz, 2019). An optimal weighting matrix is proportional to the inverse of the covariance
matrix of the moment conditions (see, e.g., Arellano, 2003). The default weighting matrix used in
pdynmc is based on the proposal of Arellano and Bond (1991). For details on available alternatives,
see the documentation of pdynmc and the corresponding package vignette (Fritsch et al., 2020).

Details on the computation of asymptotic one- and two-step standard errors can be found in
Doornik et al. (2012). As asymptotic two-step GMM standard errors for the estimated coefficients ex-
hibit a downward bias in small samples, they can be substantially lower than one-step GMM standard
errors (see, e.g., Arellano and Bond, 1991). Windmeijer (2005) relates the bias to the dependence of the
two-step weighting matrix on one-step parameter estimates and proposes an analytic correction of
two-step standard errors. Robust and non-robust versions of the standard errors are available.

Coefficient estimates and standard errors from one- and two-step GMM estimation can be mislead-
ing. An example of high practical relevance is, when the estimated model is a reasonable approximation
instead of the true functional relationship (Hansen and Lee, 2021; Hwang et al., 2021): This may render
some of the moment conditions invalid. Hansen and Lee (2021) highlight the arbitrariness of the initial
weighting matrix and note that iterated GMM provides a remedy. Across iterations, the weighting
matrix is updated based on the residuals of the previous estimation step (for more details, see Hansen
and Lee, 2021, p. 4–6). Iterated GMM is used as a default in pdynmc.

We implement the following tests:

• The serial correlation test of Arellano (2003).

• The overidentifying restrictions test of Hansen (1982), called “J-test”.

• A Wald test of joint significance of (i) coefficients of lagged-dependent variable(s) and covariates;
(ii) time dummy coefficients; (iii) both, (i) and (ii).

When nonlinear moment conditions are used in GMM estimation, nonlinear optimization tech-
niques are required to obtain coefficient estimates. By default, GMM estimation by pdynmc is based
on numerical optimization. For the optimization procedure, we rely on R-package optimx (Nash
and Varadhan, 2011; Nash, 2014). All optimization routines implemented in optimx are available in
pdynmc. Based on our experience, we recommend using the Variable Metric method (Fletcher, 1970;
Nash, 1990, 2020) in estimation of linear dynamic panel data models. The technique is labeled BFGS in
optimx and serves as default procedure in pdynmc.

Function arguments explained

In package pdynmc, the eponymous function is intended for model fitting. The most important
function arguments for applied work are summarized in Table 1.
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Argument Description

dat Data set with rows (i.e., observations) and columns (i.e., variables).
varname.i Cross-section identifier (column name).
varname.t Time-series identifier (column name).

use.mc.diff Use moment conditions from Equation (6) (i.e., equations in differences,
instruments in levels).

use.mc.lev Use moment conditions from Equation (10) (i.e., equations in levels,
instruments in differences).

use.mc.nonlin Use nonlinear (quadratic) moment conditions from Equation (8).
use.mc.nonlinAS If turned to FALSE, the nonlinear moment conditions are used in a mod-

ified version (that is also valid under StA), where T in Equation (8) is
replaced by t.

include.y Derive instruments from lags of dependent variable.
varname.y Name of dependent variable in data set.
lagTerms.y Number of lags of dependent variable.
maxLags.y Maximum number of lags of dependent variable from which to derive

instruments.

include.x Derive instruments from covariates.
varname.reg.end Name(s) of covariate(s) to be treated as endogenous (replace suffix end

by pre for predetermined; by ex for exogenous covariates).
lagTerms.reg.end Number of lags of endogenous covariate(s) (also for pre or ex).
maxLags.reg.end Maximum number of lags of endogenous covariate(s) used to derive

instruments (also for pre or ex).

fur.con Include further control variables (i.e., covariates that are not used for
deriving instruments).

fur.con.diff Logical variable indicating whether to include further control variables
in equations in differences.

fur.con.lev Logical variable indicating whether to include further control variables
in equations in levels.

varname.reg.fur Name(s) of covariate(s) in data set to be treated as further controls.
lagTerms.reg.fur Number of lags of further controls.

include.dum Include time dummies. Note: Can be constructed from multiple vari-
ables.

dum.diff Include time dummies in equations in first differences.
dum.lev Include time dummies in equations in levels.
varname.dum Variable name(s) for creating time dummies (can be different from

varname.t).

w.mat Type of weighting matrix to be used, iid.err (as proposed by Arellano
and Bond (1991)), identity, or zero.cov.

std.err Type of standard errors to be used, either bias-corrected (corrected)
according to Windmeijer (2005) or not (unadjusted).

estimation Type of estimation, onestep, twostep, or iterative.

Table 1: Most-used arguments of function pdynmc.
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Besides the arguments described in Table 1, various further configuration options exist for function
pdynmc. The function allows for inclusion of further covariates which are only used as instruments (i.e.,
covariates from which moment conditions are derived, but for which no parameters are estimated;
compare arguments include.x.instr and varname.reg.instr) as well as the opposite, covariates
which are instrumented (i.e., covariates for which parameters are estimated, but from which no
moment conditions are derived; compare arguments include.x.toInstr and varname.reg.toInstr).

Further, thresholds for collinearity checks can be adjusted via col_tol. The total number of
instruments above which a generalized inverse is used to invert the weighting matrix can be specified
by inst.thresh.

When only linear moment conditions are used, a closed-form solution exists for the estimator and
nonlinear optimization can be turned off (by opt.meth = "none"). Package optimx is employed for
nonlinear optimization and argument hessian controls, whether the Hessian matrix is approximated
in estimation; all other control arguments for optimx can be provided in a list via optCtrl. Starting
values for initializing nonlinear optimization are drawn from the uniform distribution in the interval
[-1, 1] via start.val.lo = -1 and start.val.hi = 1; a seed (seed.input = 42) ensures reproducibility
(limits and seed can be adjusted). Alternatively, specific starting values can be provided via argument
start.val (note that custom.start.val has to be set to TRUE).

For iterated estimation, termination criteria can be set via max.iter (maximum number of itera-
tions) and iter.tol (tolerance for determining convergence).

The Stata packages xtabond2 (Roodman, 2018) and xtdpdgmm have a somewhat different usage
and weighting of moment conditions. If HNR and ABov moment conditions are available for estima-
tion, some of the ABov moment conditions are redundant (see Fritsch, 2019, for a derivation). While the
Stata routines fully expand the linear ABov moment conditions when setting up the instrument matrix
(including the redundant moment conditions), pdynmc omits the redundant moment conditions. The
pdynmc arguments inst.stata and w.mat.stata are included to allow for conformity to Stata and to
reproduce estimation results.

Empirical example

The functionality of pdynmc is illustrated by replicating Arellano and Bond (1991) in a wide sense
as we incorporate linear ABov and nonlinear AS moment conditions into the analysis; we also draw
comparisons between pdynmc, the pgmm (Croissant et al., 2020) function in R-package plm, and Stata
implementations xtabond2 and xtdpdgmm (Kripfganz, 2019).

Arellano and Bond (1991) employ an unbalanced panel of n = 140 firms located in the UK. The
dataset spans T = 9 time periods and is available from R package plm. Arellano and Bond (1991)
investigate employment equations and consider the dynamic specification

ni,t =α1ni,t−1 + α2ni,t−2+ (11)

β1wi,t + β2wi,t−1 + β3ki,t + β4ki,t−1 + β5ki,t−2 + β6ysi,t + β7ysi,t−1 + β8ysi,t−2+

γ3d3 + · · ·+ γTdT + ηi + εi,t, i = 1, ..., n; t = 3, ..., T,

where i denotes the firm and t is the time series dimension. The natural logarithm of employment
(n) is explained by its first two lags and the further covariates natural logarithm of wage (w), natural
logarithm of capital (k), natural logarithm of output (ys), and their lags of order up to one (for w) or
two (for k and ys). Variables d3, . . . , dT are time dummies with corresponding coefficients γ3, . . . , γT ;
unobserved individual-specific effects are represented by η, and ε is an idiosyncratic remainder
component.

We load the dataset and compute logarithms of the four mentioned variables via:

data(EmplUK, package = "plm")
dat <- EmplUK
dat[,c(4:7)] <- log(dat[,c(4:7)])
names(dat)[4:7] <- c("n", "w", "k", "ys")

As GMM estimation with linear and/or nonlinear moment conditions in pdynmc allows for
arbitrary unbalancedness, we included the functions data.info and strucUPD.plot to provide an
overview of the panel data structure. Both functions require the column name of cross-section (i.name)
and time series identifier (t.name). Using data.info(dat,i.name = "firm",t.name = "year") yields

Unbalanced panel data set with 1031 rows and the following time period frequencies:
1976 1977 1978 1979 1980 1981 1982 1983 1984
80 138 140 140 140 140 140 78 35

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 7

The command strucUPD.plot(dat,i.name = "firm",t.name = "year") gives the visual represen-
tation of the panel data structure shown in Figure 1. Figure 1 indicates the time periods (compare
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Figure 1: Unbalanced panel structure plot.

abscissa) available for each cross-sectional unit (ordinate). Blank areas represent missing observations.
The coloring scheme shows the number of time series units that are available for the corresponding
cross-sectional units. We see that the given dataset has already been ordered by the number of time
periods available.

The goal of the empirical analysis is to estimate the lag parameters α1 and α2 and the coefficients
β j of the j = 1, . . . , 8 further covariates, while controlling for (unobserved) time effects and accounting
for unobserved individual-specific heterogeneity. In the following, we first apply pdynmc to replicate
the original results of Arellano and Bond (1991) that are based on HNR moment conditions only,
and introduce the implemented tests. Then, we provide results for adding ABov moment conditions
to the analysis. Finally, we discuss results for HNR moment conditions extended by AS moment
conditions and apply iterated GMM. All results on estimated coefficients and robust standard errors are
summarized in Table 2. Details on employed moment conditions are provided in the table footnotes.

GMM estimation with HNR moment conditions

When reproducing the results in Table 4 on p. 290 of Arellano and Bond (1991) with pdynmc, the
model structure underlying Equation (11) can be specified and estimated by:

m1 <- pdynmc(
dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "n", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("w", "k", "ys"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected",
estimation = "onestep", opt.meth = "none"

)

The standard output is accessed via summary(m1) and can be found in panel (a) of Table 2. The
estimated coefficients reproduce the estimates in Table 4, column (a1) on p. 290 of Arellano and Bond
(1991), when one specifies all arguments as stated in this section. Changing the argument estimation
to twostep yields two-step GMM coefficient estimates (the pdynmc-output object is assigned to m2)
from Table 4, column (a2) on p. 290 of Arellano and Bond (1991). These results may be found in
panel (b) of Table 2. Note that the standard errors presented in column (b) of Table 2 are based on
the Windmeijer-correction and deviate from the conventional standard errors reported in Arellano
and Bond (1991). Standard errors from the original analysis can be reproduced by setting std.err =
"unadjusted".
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(a) (b) (c) (d) (e)
1-Step Estimate 2-S. Estimate 2-S. Estimate 2-S. Estimate Iterated Est.

HNR only HNR only HNR & ABov HNR & AS HNR & AS
(SE Rob.) (SE Rob.) (SE Rob.) (SE Rob.) (SE Rob.)

L1.n 0.686*** 0.629** 1.103*** 1.112*** 1.197***
(0.145) (0.193) (0.050) (0.066) (0.069)

L2.n -0.085 -0.065 -0.104* -0.071 -0.126
(0.056) (0.045) (0.047) (0.069) (0.068)

w -0.608*** -0.526*** -0.448** -0.417** -0.219
(0.178) (0.155) (0.149) (0.153) (0.127)

L1.w 0.393* 0.311 0.423** 0.413** 0.258
(0.168) (0.203) (0.156) (0.160) (0.138)

k 0.357*** 0.278*** 0.290*** 0.309*** 0.255***
(0.059) (0.073) (0.050) (0.053) (0.056)

L1.k -0.058 0.014 -0.153* -0.189** -0.155*
(0.073) (0.092) (0.067) (0.068) (0.077)

L2.k -0.020 -0.040 -0.137*** -0.154** -0.156**
(0.033) (0.043) (0.041) (0.050) (0.055)

ys 0.609*** 0.592*** 0.548** 0.582** 0.530**
(0.173) (0.173) (0.194) (0.178) (0.183)

L1.ys -0.711** -0.566* -0.666** -0.624** -0.379
(0.232) (0.261) (0.221) (0.216) (0.223)

L2.ys 0.106 0.101 0.127 0.023 -0.208
(0.141) (0.161) (0.156) (0.151) (0.152)

1979 0.010 0.011 0.024* 0.027* 0.031**
(0.010) (0.012) (0.011) (0.011) (0.010)

1980 0.022 0.023 0.041* 0.047** 0.053**
(0.018) (0.020) (0.020) (0.018) (0.018)

1981 -0.012 -0.021 0.002 0.018 0.026
(0.030) (0.033) (0.034) (0.030) (0.030)

1982 -0.027 -0.031 0.018 0.022 0.034
(0.029) (0.034) (0.023) (0.021) (0.023)

1983 -0.021 -0.018 0.043* 0.037* 0.041*
(0.030) (0.037) (0.018) (0.019) (0.021)

1984 -0.008 -0.023 0.029 0.015 0.021
(0.031) (0.037) (0.022) (0.022) (0.024)

(a, b) Equations in differences: L (2/8) .n, D.w, L.D.w, D.k, L.D.k, L2.D.k, D.ys, L.D.ys, L2.D.ys, D.1979− D.1984

(c) Equations in differences: L (2/8) .n, D.w, L.D.w, L2.D.w, D.k, L.D.k, L2.D.k, D.ys, L.D.ys, L2.D.ys, D.1979− D.1984

Equations in levels: L (1/7) .D.n, w, L.w, L2.w, k, L.k, L2.k, ys, L.ys, L2.ys

(d, e) Equations in differences: L (2/8) .n, u, D.w, L.D.w, L2.D.w, D.k, L.D.k, L2.D.k, D.ys, L.D.ys, L2.D.ys, D.1979− D.1984

Equations in levels: w, L.w, L2.w, k, L.k, L2.k, ys, L.ys, L2.ys

* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null that the coefficient is equal to zero)

Table 2: Estimates in the spirit of Table 4 in Arellano and Bond (1991). Use of L(a1/a2) indicates lag
transformation by a minimum of a1 and a maximum of a2 time periods; D indicates first differences.
Table footnotes indicate available instruments and corresponding equations.
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The command mtest.fct(m2,t.order = 2) is used to perform the test of Arellano and Bond
(1991) for second order serial correlation and yields:

Arellano and Bond (1991) serial correlation test of degree 2

data: 2step GMM Estimation; H0: no serial correlation of order 2 in the error terms
normal = -0.37133, p-value = 0.7104

The test does not reject the null hypothesis at any plausible significance level and provides no indication
that the model specification might be inadequate.

Computing the Hansen J-test of overidentifying restrictions by jtest.fct(m2) yields:

J-Test of Hansen

data: 2step GMM Estimation; H0: overidentifying restrictions valid
chisq = 31.381, df = 25, p-value = 0.1767

As the test does not reject the null hypothesis, there are no indications that the validity of the instru-
ments (i.e., the model assumptions) employed in estimation may be in doubt.

For the Wald test of the null hypothesis that the population parameters of all coefficients included
in the model are jointly zero, which is tested by wald.fct(m2,param = "all"), we obtain:

Wald test

data: 2step GMM Estimation; H0: all parameters are jointly zero
chisq = 1100, df = 16, p-value < 2.2e-16

The test rejects the null hypothesis. Hence, all tests shown here provide no indications that the model
in column (b) of Table 2 is misspecified.

Comparing the results to xtabond2 shows that degrees of freedom and p-values differ for the
latter two tests. We consider 25 degrees of freedom to be the appropriate number in the J-test, as 41
instruments are employed in estimation to obtain 16 coefficient estimates. The latter number (16) is the
appropriate number of degrees of freedom in the Wald test. It seems that the function xtabond2 does
not correct the degrees of freedom for the number of dummies dropped in estimation1. The difference
in the p-value is due to the differences in the degrees of freedom. Our results are equivalent to the
results of pgmm for the overidentifying restrictions test (referred to as “Sargan test” in pgmm).

Using many instruments may have undesirable side effects such as biased coefficient estimates
and standard errors; this may result in misleading inference and specification tests (see, e.g., Roodman,
2009). The number of lags of the dependent variable which are used to derive moment conditions
can be limited by setting maxLags.y (equivalently lags of, for example, endogenous covariates can be
limited via maxLags.reg.end). Setting maxLags.y = 4 reduces the number of HNR moment conditions
for the GMM estimation above from 27 to 17 and the total number of instruments employed in the
estimation from 41 to 31.

GMM estimation with HNR and ABov moment conditions

When the “constant correlated effects” assumption stated in Equation (9) holds, the HNR moment
conditions from equations in differences employed in Section GMM estimation with HNR moment
conditions can be extended by the ABov moment conditions from equations in levels.

The ABov moment conditions are particularly useful for data generating processes, which are
highly persistent (Blundell and Bond, 1998). In this case, identification by the HNR moment conditions
from equations in differences may fail and GMM estimation based on HNR moment conditions is
documented to possess poor finite sample performance (see, e.g., Blundell and Bond, 1998; Blundell
et al., 2001; Bun and Sarafidis, 2015).

In pdynmc, the ABov moment conditions from equations in levels can be (additionally) incorpo-
rated by:

use.mc.lev = TRUE

In principle, both time dummies and further covariates can be included in the equations in first
differences and the level equations. It is recommended, though, to include the dummies only in one
of the equations, as it can be shown that incorporating them in both equations renders one set of

1Dummies are dropped by the estimation routine in case of high collinearity.
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dummies redundant for estimation – while for non-lagged dependent covariates, this equivalence
does not hold.2 We accommodate non-lagged dependent covariates in the levels equations by

fur.con.lev = TRUE

for all subsequent estimations of this example. The results presented in column (c) of Table 2 are
two-step estimates of column (a2) of Table 4 in Arellano and Bond (1991) extended by ABov moment
conditions.

Including ABov moment conditions into the analysis leads to substantial changes in the coefficient
estimates of the first lag of the dependent variable. Note that the results indicate a markedly higher
persistence of employment and render including two lags of the dependent variable questionable
(Blundell and Bond, 1998, e.g., estimate a version of the equation which contains only one lag of all
covariates). Note that the coefficient estimates of the covariates, besides the first lag of the dependent
variable, appear to be similar across estimations.

Equivalent results to column (c) of Table 2 can be obtained from the pgmm function in the plm-
package. When replicating the results with xtabond2, inst.stata = TRUE in pdynmc ensures that
results are equivalent.

GMM estimation with HNR and AS moment conditions

Recall that the linear ABov moment conditions from equations in levels encompass the nonlinear
AS moment conditions (Blundell and Bond, 1998; a derivation is provided in Fritsch, 2019). Both
sets of moment conditions may be useful in GMM estimation when the lag parameter is close to
unity and it can be shown that extending the HNR moment conditions by either the ABov or the
AS moment conditions may identify the lag parameter – even when individual moment conditions
fail to do so (Blundell and Bond, 1998; Bun and Kleibergen, 2021; Gørgens et al., 2019). The ABov
moment conditions require the “constant correlated effects” assumption to hold, while the AS moment
conditions only require standard assumptions to hold. Therefore, the latter may be useful in situations
where the “constant correlated effects” assumption is in doubt and the statistician aims to investigate
a highly persistent dynamic process with a structure similar to Equation (3). In pdynmc, including
nonlinear moment conditions into the analysis is available via:

use.mc.nonlin = TRUE

When extending the analysis of Arellano and Bond (1991) by the nonlinear AS moment conditions, the
results differ substantially from column (b) of Table 2 and are very similar to the coefficient estimates
shown in column (c) of Table 2. This indicates high persistence in the employment process that leads
to lag parameters not being identified by the HNR moment conditions (Bun and Kleibergen, 2021;
Gørgens et al., 2019).

Additionally, we employ iterated GMM via:

estimation = "iterative", max.iter = 100, iter.tol = 0.01,

Iterated GMM results are shown in column (e) of Table 2. The moment conditions employed are the
same as in column (d) of the table. The parameter estimates obtained after 13 steps are relatively
similar to those in columns (c)-(d). The ranges of the coefficient estimates across GMM iterations are
displayed in Figure 2. This plot is available for two-step and iterated GMM estimates via command
plot(m5,type = "coef.range",omit1step = TRUE). Using command plot(m5) yields a scatterplot
of fitted values and residuals of a fitted model object, instead.

Figure 2 indicates coefficient estimates at iteration 2 as grey open circles (the first iteration is
ignored due to omit1step = TRUE) and estimates at the last iteration as blue diamonds. For the
estimates displayed in column (e) of Table 2, we observe that the lag parameters are relatively stable
across iterations and resemble the two-step estimates; for the further covariates, larger changes in
coefficient estimates across iterations occur for coefficients with larger standard errors (compare w, k,
and ys).

As an additional tool to investigate coefficient estimates from iterated GMM, coefficient path
plots (compare Hansen and Lee, 2021, Figure 1) are provided. Figure 3 illustrates the path of coef-
ficient estimates for lag parameter α1 across GMM iterations and is obtained via plot(m5,type =
"coef.path",co = "L1.n"). Argument co allows to draw the path(s) of particular coefficient esti-
mates; per default, all coefficients (apart from time dummies) are included in the plot. Approximate
95% confidence bands were added to the plot for the final iteration (available by setting argument
add.se.approx = TRUE).

2Note that this is the case in balanced panels. The results may also not be numerically identical across function
calls for different choices of the one-step weighting matrix. For a discussion, see https://www.statalist.org/
forums/forum/general-stata-discussion/general/1357268-system-gmm-time-dummies.
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Figure 2: Estimated coefficients and corresponding coefficient ranges during iterated GMM estimation
(ordinate) for the covariates (dummy variables excluded). Coefficient estimates at the initial step are
displayed as grey open circles and the estimates at the last step as blue diamonds.
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Figure 3: Estimated coefficient path for lag parameter α1 during iterated GMM estimation and
corresponding approximate 95% confidence bands for final iteration.

Overall, the results displayed in columns (c)-(e) of Table 2 suggest that the employment process
may be highly persistent and that using only HNR moment conditions may not be sufficient to identify
the parameters. In practice, contrasting GMM estimates based on HNR and AS moment conditions
with GMM estimates based on HNR and ABov moment conditions can be used as a robustness check
of the “constant correlated effects” assumption: When estimates differ, this may cast doubt on the
assumption. Here, this is not the case as the results in column (c) are very close to those in (d) and (e).

Conclusion

R-package pdynmc provides a function to estimate linear dynamic panel data models based on linear
and nonlinear moment conditions. The implementation reflects recent developments in the literature
by including iterated GMM and offers a wide variety of configuration options. The package provides
the only open source solution for GMM estimation of dynamic panels with linear and nonlinear
moment conditions, aligns commercial and noncommercial software, and is implemented to enable
the user to exert precise control over all functionality. Additionally, suitable visualizations of panel
data structures and ranges and paths of coefficient estimates across GMM iterations are provided.

Functionality of pdynmc includes that it allows for general lag structures of the covariates; further
controls and external instruments (if available) may also be added. The estimation routine can handle
balanced and unbalanced panel data sets and provides one-step-, two-step-, and iterated estimation.
Accounting for (unobserved) time-specific effects is possible by including time dummies. Estimation
relies on numerical optimization of the GMM objective function. Corresponding closed form solutions
are computed – where possible – and stored besides the results from numerical optimization. Different
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choices for the weighting matrix, which guides the aggregation of moment conditions in one-step
GMM estimation are available. Robust standard errors are available for inference and specification
testing. Nonlinear moment conditions provide a robustness check of the frequently employed constant
correlated effects assumption.
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