Package 'flightplanning'

February 24, 2021

Type Package

Title UAV Flight Planning

Version 0.8.4

Description Utility functions for creating flight plans for unmanned aerial vehicles (UAV), specially for the Litchi Hub platform. It calculates the flight and camera settings based on the camera specifications, exporting the flight plan CSV format ready to import into Litchi Hub.

Imports graphics, grDevices, methods, rgdal, rgeos, sp

Depends R (>= 3.0)

Suggests testthat

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

URL https://github.com/caiohamamura/flightplanning-R

BugReports https://github.com/caiohamamura/flightplanning-R/issues

Author Caio Hamamura [aut, cre], Danilo Roberti Alves de Almeida [aut], Daniel de Almeida Papa [aut], Hudson Franklin Pessoa Veras [aut], Evandro Orfanó Figueiredo [aut]

Maintainer Caio Hamamura <caiohamamura@gmail.com>

Repository CRAN

Repository/R-Forge/Project flightplanning

Repository/R-Forge/Revision 17

Repository/R-Forge/DateTimeStamp 2021-02-23 14:15:25

Date/Publication 2021-02-24 09:40:02 UTC

NeedsCompilation no

R topics documented:

adjustAcuteAngles	2
Flight Parameters-class	2
flight.parameters	3
getAngles	4
getBBoxAngle	4
getMinBBox	5
litchi.plan	5
outerCurvePoints	7
	_
	8

Index

adjustAcuteAngles Given a xy matrix of points, adjust the points to avoid acute angles < 80 degrees

Description

Given a xy matrix of points, adjust the points to avoid acute angles < 80 degrees

Usage

```
adjustAcuteAngles(xy, angle, minAngle = 80)
```

Arguments

ху	xy dataframe
angle	angle of the flight lines
minAngle	the minimum angle to below which will be projected

Flight Parameters-class

Class for Flight Parameters

Description

Class for Flight Parameters

flight.parameters Function to calculate flight parameters

Description

This function will calculate the flight parameters by providing the camera settings target flight height or gsd, front and side overlap.

Usage

```
flight.parameters(
   height = NA,
   gsd = NA,
   focal.length35 = 20,
   image.width.px = 4000,
   image.height.px = 3000,
   side.overlap = 0.8,
   front.overlap = 0.8,
   flight.speed.kmh = 54
)
```

Arguments

height	target flight height, default NA	
gsd	target ground resolution in centimeters, must provide either 'gsd' or 'height'	
focal.length35	numeric. Camera focal length 35mm equivalent, default 20	
image.width.px	numeric. Image width in pixels, default 4000	
image.height.px		
	numeric. Image height in pixels, default 3000	
side.overlap	desired width overlap between photos, default 0.8	
front.overlap	desired height overlap between photos, default 0.8	
flight.speed.kmh		
	flight speed in km/h, default 54.	

Examples

```
params = flight.parameters(
  gsd = 4,
  side.overlap = 0.8,
  front.overlap = 0.8,
  flight.speed.kmh = 54
)
```

getAngles

Description

Get angles for each point considering the two neighbors points

Usage

getAngles(waypoints)

Arguments

waypoints the waypoints of the flight plan

getBBoxAngle	Provided an angle,	calculate the	e corresponding	minimum	bounding
	box				

Description

Provided an angle, calculate the corresponding minimum bounding box

Usage

```
getBBoxAngle(vertices, alpha)
```

Arguments

vertices	the vertices which to get the bounding box from
alpha	the angle to rotate the bounding box

getMinBBox

Description

Calculates the minimum oriented bounding box using the rotating claipers algorithm. Credits go to Daniel Wollschlaeger https://github.com/ramnathv

Usage

getMinBBox(xy)

Arguments

ху

A matrix of xy values from which to calculate the minimum oriented bounding box.

			-	
1.7	+ ~	hı	nlan	
_ <u> </u>	LL		. Draii	

Function to generate Litchi csv flight plan

Description

Function to generate Litchi csv flight plan

Usage

```
litchi.plan(
  roi,
  output,
  flight.params,
  gimbal.pitch.angle = -90,
  flight.lines.angle = -1,
  max.waypoints.distance = 2000,
  max.flight.time = 15,
  starting.point = 1
)
```

Arguments

roi	range of interest loaded as an OGR layer, must be in a metric units projection for working properly		
output	output path for the csv file		
flight.params	Flight Parameters. parameters calculated from flight.parameters()		
gimbal.pitch.angle			
	gimbal angle for taking photos, default -90 (overriden at flight time)		

flight.lines.ar	ngle	
	angle for the flight lines, default -1 (auto set based on larger direction)	
<pre>max.waypoints.c</pre>	listance	
	maximum distance between waypoints in meters, default 2000 (some issues have been reported with distances > 2 Km)	
max.flight.time		
	maximum flight time. If mission is greater than the estimated time, it will be splitted into smaller missions.	
starting.point	numeric (1, 2, 3 or 4). Change position from which to start the flight, default 1	

Value

A data frame with the waypoints calculated for the flight plan

Note

this function will feed the csv flight plan with the 'gimbal.pitch.angle' and the 'photo time interval' for each waypoint, but those are not supported by Litchi yet, although they are present in the exported csv from the Litchi hub platform, though it may be supported in the future; when it does the function will already work with this feature.

Examples

```
library(flightplanning)
library(rgdal)
exampleBoundary = readOGR(
                          system.file("extdata",
                                       "exampleBoundary.shp",
                                      package="flightplanning"
                                     ),
                          "exampleBoundary")
outPath = tempfile(fileext=".csv")
flight.params = flight.parameters(
 gsd = 4,
 side.overlap = 0.8,
 front.overlap = 0.8,
 flight.speed.kmh = 54
)
litchi.plan(exampleBoundary,
            outPath,
            flight.params,
            flight.lines.angle = -1,
            max.waypoints.distance = 2000,
            max.flight.time = 15)
```

outerCurvePoints Create outer curves for the flight lines

Description

Create outer curves for the flight lines

Usage

outerCurvePoints(waypoints, angle, flightLineDistance)

Arguments

waypoints the waypoints of the flight plan angle angle for the flight lines flightLineDistance the distance between the flight lines in meters

Index

adjustAcuteAngles, 2

Flight Parameters-class, 2 flight.parameters, 3

getAngles, 4
getBBoxAngle, 4
getMinBBox, 5

litchi.plan,5

outerCurvePoints,7