meteo: RFSI & STRK Interpolation for Meteo and Environmental Variables

Random Forest Spatial Interpolation (RFSI, Sekulić et al. (2020) <doi:10.3390/rs12101687>) and spatio-temporal geostatistical (spatio-temporal regression Kriging (STRK)) interpolation for meteorological (Kilibarda et al. (2014) <doi:10.1002/2013JD020803>, Sekulić et al. (2020) <doi:10.1007/s00704-019-03077-3>) and other environmental variables. Contains global spatio-temporal models calculated using publicly available data.

Version: 2.0-3
Depends: R (≥ 4.0.0)
Imports: methods, utils, stats, DescTools, caret, data.table, dplyr, sp, spacetime, gstat, foreach, parallel, snowfall, doParallel, plyr, units, nabor, CAST, ranger, sf, sftime, raster, terra, jsonlite
Published: 2024-04-18
Author: Milan Kilibarda ORCID iD [aut], Aleksandar Sekulić ORCID iD [aut, cre], Tomislav Hengl [ctb], Edzer Pebesma [ctb], Benedikt Graeler [ctb]
Maintainer: Aleksandar Sekulić <asekulic at>
License: GPL-2 | GPL-3 | file LICENCE [expanded from: GPL (≥ 2.0) | file LICENCE]
NeedsCompilation: no
Citation: meteo citation info
In views: Hydrology
CRAN checks: meteo results


Reference manual: meteo.pdf


Package source: meteo_2.0-3.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): meteo_2.0-3.tgz, r-oldrel (arm64): meteo_2.0-3.tgz, r-release (x86_64): meteo_2.0-3.tgz, r-oldrel (x86_64): meteo_2.0-3.tgz
Old sources: meteo archive


Please use the canonical form to link to this page.