
Package ‘iglu’
September 15, 2020

Type Package

Title Interpreting Glucose Data from Continuous Glucose Monitors

Version 2.0.1

Description Implements a wide range of metrics for measuring glucose control and glucose variabil-
ity based on continuous glucose monitoring data. The list of implemented metrics is summa-
rized in Rodbard (2009) <doi:10.1089/dia.2009.0015>. Additional visualization tools in-
clude time-series and lasagna plots.

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 3.1.0)

Imports caTools, scales, stats, ggplot2, lubridate, shiny, dplyr,
magrittr, tibble, tidyr

Suggests knitr, rmarkdown, testthat (>= 2.1.0)

VignetteBuilder knitr

NeedsCompilation no

Author Steve Broll [aut],
Jacek Urbanek [aut],
David Buchanan [aut],
Elizabeth Chun [aut],
John Muschelli [aut],
John Schwenck [aut],
Mary Martin [aut],
Pratik Patel [aut],
Marielle Hicban [aut],
Nhan Nguyen [aut],
Irina Gaynanova [aut, cre]

Maintainer Irina Gaynanova <irinag@stat.tamu.edu>

Repository CRAN

Date/Publication 2020-09-15 17:10:09 UTC

1

2 R topics documented:

R topics documented:
above_percent . 3
active_percent . 4
adrr . 5
auc . 6
below_percent . 7
CGMS2DayByDay . 8
conga . 9
cv_glu . 10
cv_measures . 11
ea1c . 12
example_data_1_subject . 13
example_data_5_subject . 14
gmi . 14
grade . 15
grade_eugly . 16
grade_hyper . 17
grade_hypo . 18
gvp . 19
hbgi . 20
hist_roc . 21
hyper_index . 22
hypo_index . 24
igc . 25
iglu_shiny . 26
in_range_percent . 26
iqr_glu . 27
j_index . 28
lbgi . 29
mad_glu . 30
mage . 31
mean_glu . 32
median_glu . 33
modd . 34
m_value . 35
plot_glu . 36
plot_lasagna . 37
plot_lasagna_1subject . 39
plot_roc . 40
quantile_glu . 41
range_glu . 42
roc . 43
sd_glu . 44
sd_measures . 45
sd_roc . 47
summary_glu . 48

Index 50

above_percent 3

above_percent Calculate percentage of values above target thresholds

Description

The function above_percent produces a tibble object with values equal to the percentage of glucose
measurements above target values. The output columns correspond to the subject id followed by
the target values and the output rows correspond to the subjects. The values will be between 0 (no
measurements) and 100 (all measurements).

Usage

above_percent(data, targets_above = c(140, 180, 200, 250))

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

targets_above Numeric vector of glucose thresholds. Glucose values from data argument will
be compared to each value in the targets_above vector. Default list is (140, 180,
200, 250).

Details

A tibble object with 1 row for each subject, a column for subject id and column for each target value
is returned. NA’s will be omitted from the glucose values in calculation of percent.

Value

If a data.frame object is passed, then a tibble object with a column for subject id and then a column
for each target value is returned. If a vector of glucose values is passed, then a tibble object without
the subject id is returned. as.numeric() can be wrapped around the latter to output a numeric vector.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi: 10.1089/dia.2008.0132.

Examples

data(example_data_1_subject)

above_percent(example_data_1_subject)
above_percent(example_data_1_subject, targets_above = c(100, 150, 180))

data(example_data_5_subject)

https://doi.org/10.1089/dia.2008.0132

4 active_percent

above_percent(example_data_5_subject)
above_percent(example_data_5_subject, targets_above = c(70, 170))

active_percent Calculate percentage of time CGM was active

Description

The function active_percent produces a tibble object with values equal to the percentage of time the
cgm was active. For example, if a cgm’s (5 min frequency) times were 0, 5, 10, 15 and glucose
values were missing at time 5, then percentage of time the cgm was active is 75 The output columns
correspond to the subject id and the precentage of time for which the cgm was active, and the output
rows correspond to the subjects. The values will be between 0

Usage

active_percent(data, freqCGM = 5)

Arguments

data DataFrame object with column names "id", "time", and "gl"

freqCGM Numeric value of CGM Frequency(In minutes). Default value is 5.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for active_percent
values is returned.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
active_percent value is returned

Author(s)

Pratik Patel

References

Danne et al. (2017) International Consensus on Use of Continuous Glucose Monitoring Diabetes
Care 40 .1631-1640, doi: 10.2337/dc171600.

https://doi.org/10.2337/dc17-1600

adrr 5

Examples

data(example_data_1_subject)

active_percent(example_data_1_subject)
active_percent(example_data_1_subject, freqCGM = 15)

data(example_data_5_subject)

active_percent(example_data_5_subject)
active_percent(example_data_5_subject, freqCGM = 5)

adrr Calculate average daily risk range (ADRR)

Description

The function adrr produces ADRR values in a tibble object.

Usage

adrr(data)

Arguments

data DataFrame object with column names "id", "time", and "gl".

Details

A tibble object with 1 row for each subject, a column for subject id and a column for ADRR values
is returned. NA glucose values are omitted from the calculation of the ADRR values.

ADRR is the average sum of HBGI corresponding to the highest glucose value and LBGI corre-
sponding to the lowest glucose value for each day, with the average taken over the daily sums. If
there are no high glucose or no low glucose values, then 0 will be substituted for the HBGI value or
the LBGI value, respectively, for that day.

Value

A tibble object with two columns: subject id and corresponding ADRR value.

References

Kovatchev et al. (2006) Evaluation of a New Measure of Blood Glucose Variability in, Diabetes
Diabetes care 29 .2433-2438, doi: 10.2337/dc061085.

https://doi.org/10.2337/dc06-1085

6 auc

Examples

data(example_data_1_subject)
adrr(example_data_1_subject)

data(example_data_5_subject)
adrr(example_data_5_subject)

auc Calculate Area Under Curve AUC

Description

The function auc produces hourly average AUC for each subject.

Usage

auc(data, tz="")

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

tz String value of time zone.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for hourly average
AUC values is returned. NA glucose values are omitted from the calculation of the AUC.

AUC is calculated using the formula: (dt0/60) * ((gl[2:length(gl)] + gl[1:(length(gl)-1)])/2), where
dt0/60 is the frequency of the cgm measurements in hours and gl are the glucose values.

This formula is based off the Trapezoidal Rule: (time[2]-time[1] * ((glucose[1]+glucose[2])/2)).

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
hourly average AUC value is returned.

AUC is calculated for every hour using the trapezoidal rule, then hourly average AUC is calculated
for each 24 hour period, then the mean of hourly average AUC across all 24 hour periods is returned
as overall hourly average AUC.

References

Danne et al. (2017) International Consensus on Use of Continuous Glucose Monitoring, Diabetes
Care 40 .1631-1640, doi: 10.2337/dc171600.

https://doi.org/10.2337/dc17-1600

below_percent 7

Examples

data(example_data_1_subject)
auc(example_data_1_subject)

below_percent Calculate percentage below targeted values

Description

#’ @description The function below_percent produces a tibble object with values equal to the per-
centage of glucose measurements below target values. The output columns correspond to the subject
id followed by the target values and the output rows correspond to the subjects. The values will be
between 0 (no measurements) and 100 (all measurements).

Usage

below_percent(data, targets_below = c(50, 80))

Arguments

data DataFrame with column names ("id", "time", and "gl"), or numeric vector of
glucose values.

targets_below Numeric vector of glucose thresholds. Glucose values from data argument will
be compared to each value in the targets_below vector. Default list is (50, 80).

Details

A tibble object with 1 row for each subject, a column for subject id and column for each target value
is returned. NA’s will be omitted from the glucose values in calculation of percent.

Value

If a data.frame object is passed, then a tibble object with a column for subject id and then a column
for each target value is returned. If a vector of glucose values is passed, then a tibble object without
the subject id is returned. as.numeric() can be wrapped around the latter to output a numeric vector.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi: 10.1089/dia.2008.0132.

https://doi.org/10.1089/dia.2008.0132

8 CGMS2DayByDay

Examples

data(example_data_1_subject)

below_percent(example_data_1_subject)
below_percent(example_data_1_subject, targets_below = c(50, 100, 180))

data(example_data_5_subject)

below_percent(example_data_5_subject)
below_percent(example_data_5_subject, targets_below = c(80, 180))

CGMS2DayByDay Interpolate glucose value on an equally spaced grid from day to day

Description

Interpolate glucose value on an equally spaced grid from day to day

Usage

CGMS2DayByDay(data, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, the warning is
produced and only 1st subject is used.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Value

A list with

gd2d A matrix of glucose values with each row corresponding to a new day, and each
column corresponding to time

actual_dates A vector of dates corresponding to the rows of gd2d

dt0 Time frequency of the resulting grid, in minutes

conga 9

Examples

CGMS2DayByDay(example_data_1_subject)

conga Continuous Overall Net Glycemic Action (CONGA)

Description

The function conga produces CONGA values a tibble object for any n hours apart.

Usage

conga(data, n = 24, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

n An integer specifying how many hours prior to an observation should be used in
the CONGA calculation. The default value is set to n = 24 hours

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the CONGA
values is returned.

Missing values will be linearly interpolated when close enough to non-missing values.

CONGA is the standard deviation of the difference between glucose values that are exactly n hours
apart. CONGA is computed by taking the standard deviation of differences in measurements sepa-
rated by n hours.

Value

A tibble object with two columns: subject id and corresponding CONGA value.

References

McDonnell et al. (2005) : A novel approach to continuous glucose analysis utilizing glycemic
variation Diabetes Technology and Therapeutics 7 .253-263, doi: 10.1089/dia.2005.7.253.

https://doi.org/10.1089/dia.2005.7.253

10 cv_glu

Examples

data(example_data_1_subject)
conga(example_data_1_subject)

data(example_data_5_subject)
conga(example_data_5_subject)

cv_glu Calculate Coefficient of Variation (CV) of glucose levels

Description

The function cv_glu produces CV values in a tibble object.

Usage

cv_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for CV values is
returned. NA glucose values are omitted from the calculation of the CV.

CV (Coefficient of Variation) is calculated by 100 ∗ sd(BG)/mean(BG) Where BG is the list of
all Blood Glucose measurements for a subject.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
CV value is returned. If a vector of glucose values is passed, then a tibble object with just the CV
value is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi: 10.1089/dia.2008.0132.

https://doi.org/10.1089/dia.2008.0132

cv_measures 11

Examples

data(example_data_1_subject)
cv_glu(example_data_1_subject)

data(example_data_5_subject)
cv_glu(example_data_5_subject)

cv_measures Calculate Coefficient of Variation subtypes

Description

The function cv_measures produces CV subtype values in a tibble object.

Usage

cv_measures(data, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, the warning is
produced and only 1st subject is used.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for each cv subtype
values is returned.

Missing values will be linearly interpolated when close enough to non-missing values.

1. CVmean:
Calculated by first taking the coefficient of variation of each day’s glucose measurements, then
taking the mean of all the coefficient of variation. That is, for x days we compute cv_1 ... cv_x
daily coefficient of variations and calculate 1/x ∗

∑
[(cvi)]

12 ea1c

2. CVsd:
Calculated by first taking the coefficient of variation of each day’s glucose measurements,
then taking the standard deviation of all the coefficient of variations. That is, for d days we
compute cv_1 ... cv_d daily coefficient of variations and calculate SD([cv_1, cv_2, ... cv_d])

Value

When a data.frame object is passed, then a tibble object with three columns: subject id and corre-
sponding CV subtype values is returned.

References

Umpierrez, et.al. (2018) Glycemic Variability: How to Measure and Its Clinical Implication for
Type 2 Diabetes The American Journal of Medical Sciences 356 .518-527, doi: 10.1016/j.amjms.2018.09.010.

Examples

data(example_data_1_subject)
cv_measures(example_data_1_subject)

data(example_data_5_subject)
cv_measures(example_data_5_subject)

ea1c Calculate eA1C

Description

The function ea1c produces eA1C values in a tibble object.

Usage

ea1c(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for eA1C values
is returned. NA glucose values are omitted from the calculation of the eA1C.

eA1C score is calculated by (46.7 +mean(BG))/28.7 where BG is the vector of Blood Glucose
Measurements (mg/dL).

https://doi.org/10.1016/j.amjms.2018.09.010

example_data_1_subject 13

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
eA1C is returned. If a vector of glucose values is passed, then a tibble object with just the eA1C
value is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

Author(s)

Marielle Hicban

References

Nathan (2008) Translating the A1C assay into estimated average glucose values Hormone and
Metabolic Research 31 .1473-1478, doi: 10.2337/dc080545.

Examples

data(example_data_1_subject)
ea1c(example_data_1_subject)

data(example_data_5_subject)
ea1c(example_data_5_subject)

example_data_1_subject

Example CGM data for one subject with Type II diabetes

Description

Dexcom G4 CGM measurements from 1 subject with Type II diabetes, this is a subset of exam-
ple_data_5_subject.

Usage

example_data_1_subject

Format

A data.frame with 2915 rows and 3 columns, which are:

id identifier of subject

time 5-10 minute time value

gl glucose level

https://doi.org/10.2337/dc08-0545

14 gmi

example_data_5_subject

Example CGM data for 5 subjects with Type II diabetes

Description

Dexcom G4 CGM measurements for 5 subjects with Type II diabetes. These data are part of a larger
study sample that consisted of patients with Type 2 diabetes recruited from the general community.
To be eligible, patients with Type 2 diabetes, not using insulin therapy and with a glycosylated
hemoglobin (HbA$_1c$) value at least 6.5

Usage

example_data_5_subject

Format

A data.frame with 13866 rows and 3 columns, which are:

id identifier of subject

time date and time stamp

gl glucose level as measured by CGM (mg/dL)

gmi Calculate GMI

Description

The function gmi produces GMI values in a tibble object.

Usage

gmi(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for GMI values is
returned. NA glucose values are omitted from the calculation of the GMI.

GMI score is calculated by 3.31+(.02392∗mean(BG)) where BG is the vector of Blood Glucose
Measurements (mg/dL).

grade 15

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
GMI is returned. If a vector of glucose values is passed, then a tibble object with just the GMI value
is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

References

Bergenstal (2018) Glucose Management Indicator (GMI): A New Term for Estimating A1C From
Continuous Glucose Monitoring Hormone and Metabolic Research 41 .2275-2280, doi: 10.2337/
dc181581.

Examples

data(example_data_1_subject)
gmi(example_data_1_subject)

data(example_data_5_subject)
gmi(example_data_5_subject)

grade Calculate mean GRADE score

Description

The function grade produces GRADE score values in a tibble object.

Usage

grade(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for GRADE values
is returned. NA glucose values are omitted from the calculation of the GRADE.

GRADE score is calculated by 1/n ∗
∑

[425 ∗ (log(log(BGi/18)) + .16)2] Where BGi is the ith
Blood Glucose measurement and n is the total number of measurements.

https://doi.org/10.2337/dc18-1581
https://doi.org/10.2337/dc18-1581

16 grade_eugly

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
GRADE value is returned. If a vector of glucose values is passed, then a tibble object with just the
GRADE value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

References

Hill et al. (2007): A method for assessing quality of control from glucose profiles Diabetic Medicine
24 .753-758, doi: 10.1111/j.14645491.2007.02119.x.

Examples

data(example_data_1_subject)
grade(example_data_1_subject)

data(example_data_5_subject)
grade(example_data_5_subject)

grade_eugly Percentage of GRADE score attributable to target range

Description

The function grade_eugly produces %GRADE euglycemia values in a tibble object.

Usage

grade_eugly(data, lower = 70, upper = 140)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

lower Lower bound used for hypoglycemia cutoff, in mg/dL. Default is 70

upper Upper bound used for hyperglycemia cutoff, in mg/dL. Default is 140.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for %GRADE
euglycemia values is returned. NA glucose values are omitted from the calculation of the %GRADE
euglycemia values.

%GRADE euglycemia is determined by calculating the percentage of GRADE score (see grade
function) attributed to values in the target range, i.e. values not below hypoglycemic or above
hyperglycemic cutoffs.

https://doi.org/10.1111/j.1464-5491.2007.02119.x

grade_hyper 17

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
%GRADE euglycemia value is returned. If a vector of glucose values is passed, then a tibble object
with just the %GRADE euglycemia value is returned. as.numeric() can be wrapped around the
latter to output just a numeric value.

References

Hill et al. (2007): A method for assessing quality of control from glucose profiles Diabetic Medicine
24 .753-758, doi: 10.1111/j.14645491.2007.02119.x.

Examples

data(example_data_1_subject)
grade_eugly(example_data_1_subject)
grade_eugly(example_data_1_subject, lower = 80, upper = 180)

data(example_data_5_subject)
grade_eugly(example_data_5_subject)
grade_eugly(example_data_5_subject, lower = 80, upper = 160)

grade_hyper Percentage of GRADE score attributable to hyperglycemia

Description

The function grade_hyper produces %GRADE hyperglycemia values in a tibble object.

Usage

grade_hyper(data, upper = 140)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

upper Upper bound used for hyperglycemia cutoff, in mg/dL. Default is 140.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for %GRADE
hyperglycemia values is returned. NA glucose values are omitted from the calculation of the
%GRADE hyperglycemia values.

%GRADE hyperglycemia is determined by calculating the percentage of GRADE score (see grade
function) attributed to hyperglycemic glucose values.

https://doi.org/10.1111/j.1464-5491.2007.02119.x

18 grade_hypo

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
%GRADE hyperglycemia value is returned. If a vector of glucose values is passed, then a tibble ob-
ject with just the %GRADE hyperglycemia value is returned. as.numeric() can be wrapped around
the latter to output just a numeric value.

References

Hill et al. (2007): A method for assessing quality of control from glucose profiles Diabetic Medicine
24 .753-758, doi: 10.1111/j.14645491.2007.02119.x.

Examples

data(example_data_1_subject)
grade_hyper(example_data_1_subject)
grade_hyper(example_data_1_subject, upper = 180)

data(example_data_5_subject)
grade_hyper(example_data_5_subject)
grade_hyper(example_data_5_subject, upper = 160)

grade_hypo Percentage of GRADE score attributable to hypoglycemia

Description

The function grade_hypo produces %GRADE hypoglycemia values in a tibble object.

Usage

grade_hypo(data, lower = 80)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

lower Lower bound used for hypoglycemia cutoff, in mg/dL. Default is 80

Details

A tibble object with 1 row for each subject, a column for subject id and a column for %GRADE hy-
poglycemia values is returned. NA glucose values are omitted from the calculation of the %GRADE
hypoglycemia values.

%GRADE hypoglycemia is determined by calculating the percentage of GRADE score (see grade
function) attributed to hypoglycemic glucose values.

https://doi.org/10.1111/j.1464-5491.2007.02119.x

gvp 19

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
%GRADE hypoglycemia value is returned. If a vector of glucose values is passed, then a tibble
object with just the %GRADE hypoglycemia value is returned. as.numeric() can be wrapped around
the latter to output just a numeric value.

References

Hill et al. (2007): A method for assessing quality of control from glucose profiles Diabetic Medicine
24 .753-758, doi: 10.1111/j.14645491.2007.02119.x.

Examples

data(example_data_1_subject)
grade_hypo(example_data_1_subject)
grade_hypo(example_data_1_subject, lower = 70)

data(example_data_5_subject)
grade_hypo(example_data_5_subject)
grade_hypo(example_data_5_subject, lower = 65)

gvp Calculate Glucose Variability Percentage (GVP)

Description

The function mad produces GVP values in a tibble object.

Usage

gvp(data)

Arguments

data DataFrame object with column names "id", "time", and "gl"

Details

A tibble object with 1 row for each subject, a column for subject id and a column for GVP values is
returned. NA glucose values are omitted from the calculation of the GVP.

GVP is calculated by dividing the total length of the line of the glucose trace by the length of
a perfectly flat trace. The formula for this is sqrt(diff2 + dt02)/(n ∗ dt0), where diff is the
change in Blood Glucose measurements from one reading to the next, dt0 is the time gap between
measurements and n is the number of glucose readings

https://doi.org/10.1111/j.1464-5491.2007.02119.x

20 hbgi

Value

A tibble object with two columns: subject id and corresponding GVP value.

Author(s)

David Buchanan, Mary Martin

References

Peyser et al. (2017) Glycemic Variability Percentage: A Novel Method for Assessing Glycemic
Variability from Continuous Glucose Monitor Data. Diabetes Technol Ther 20(1):6–16, doi: 10.1089/
dia.2017.0187.

Examples

data(example_data_1_subject)
gvp(example_data_1_subject)

data(example_data_5_subject)
gvp(example_data_5_subject)

hbgi Calculate High Blood Glucose Index (HBGI)

Description

The function hbgi produces HBGI values in a tibble object.

Usage

hbgi(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for HBGI values
is returned. NA glucose values are omitted from the calculation of the HBGI.

HBGI is calculated by 1/n∗
∑

(10∗fbg2i), where fbgi = max(0, 1.509∗(log(BGi)
1.084−5.381),

BG_i is the ith Blood Glucose measurement for a subject, and n is the total number of measurements
for that subject.

https://doi.org/10.1089/dia.2017.0187
https://doi.org/10.1089/dia.2017.0187

hist_roc 21

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
HBGI value is returned. If a vector of glucose values is passed, then a tibble object with just the
HBGI value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

References

Kovatchev et al. (2006) Evaluation of a New Measure of Blood Glucose Variability in, Diabetes
Diabetes care 29 .2433-2438, doi: 10.2337/dc061085.

Examples

data(example_data_1_subject)
hbgi(example_data_1_subject)

data(example_data_5_subject)
hbgi(example_data_5_subject)

hist_roc Plot histogram of Rate of Change values (ROC)

Description

The function hist_roc produces a histogram plot of ROC values

Usage

hist_roc(data, subjects = NULL, timelag = 15, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

subjects String or list of strings corresponding to subject names in ’id’ column of data.
Default is all subjects.

timelag Integer indicating the time period (# minutes) over which rate of change is cal-
culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

https://doi.org/10.2337/dc06-1085

22 hyper_index

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

For the default, a histogram is produced for each subject displaying the ROC values colored by
ROC categories defined as follows. The breaks for the categories are: c(-Inf, -3, -2, -1, 1, 2, 3, Inf)
where the glucose is in mg/dl and the ROC values are in mg/dl/min. A ROC of -5 mg/dl/min will
thus be placed in the first category and colored accordingly.

Value

A histogram of ROC values per subject

Author(s)

Elizabeth Chun, David Buchanan

References

Clarke et al. (2009) Statistical Tools to Analyze Continuous Glucose Monitor Data, Diabetes Dia-
betes Technology and Therapeutics 11 S45-S54, doi: 10.1089/dia.2008.0138.

See Also

plot_roc for reference paper on ROC categories.

Examples

data(example_data_1_subject)
hist_roc(example_data_1_subject)

data(example_data_5_subject)
hist_roc(example_data_5_subject)
hist_roc(example_data_5_subject, subjects = 'Subject 3')

hyper_index Calculate Hyperglycemia Index

Description

The function hyper_index produces Hyperglycemia Index values in a tibble object.

Usage

hyper_index(data, ULTR = 140, a = 1.1, c = 30)

https://doi.org/10.1089/dia.2008.0138

hyper_index 23

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

ULTR Upper Limit of Target Range, default value is 140 mg/dL.

a Exponent, generally in the range from 1.0 to 2.0, default value is 1.1.

c Scaling factor, to display Hyperglycemia Index, Hypoglycemia Index, and IGC
on approximately the same numerical range as measurements of HBGI, LBGI
and GRADE, default value is 30.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the Hy-
perglycemia Index values is returned. NA glucose values are omitted from the calculation of the
Hyperglycemia Index values.

Hyperglycemia Index is calculated by n/c ∗
∑

[(hyperBGj − ULTR)a] Here n is the total num-
ber of Blood Glucose measurements (excluding NA values), hyperBGj is the jth Blood Glucose
measurement above the ULTR cutoff, a is an exponent, and c is a scaling factor.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
Hyperglycemia Index value is returned. If a vector of glucose values is passed, then a tibble object
with just the Hyperglycemia Index value is returned. as.numeric() can be wrapped around the latter
to output just a numeric value.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi: 10.1089/dia.2008.0132.

Examples

data(example_data_1_subject)
hyper_index(example_data_1_subject)
hyper_index(example_data_1_subject, ULTR = 160)

data(example_data_5_subject)
hyper_index(example_data_5_subject)
hyper_index(example_data_5_subject, ULTR = 150)

https://doi.org/10.1089/dia.2008.0132

24 hypo_index

hypo_index Calculate Hypoglycemia Index

Description

The function hypo_index produces Hypoglycemia index values in a tibble object.

Usage

hypo_index(data, LLTR = 80, b = 2, d = 30)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

LLTR Lower Limit of Target Range, default value is 80 mg/dL.

b Exponent, generally in the range from 1.0 to 2.0, default value is 2.

d Scaling factor,to display Hyperglycemia Index, Hypoglycemia Index, and IGC
on approximately the same numerical range as measurements of HBGI, LBGI
and GRADE, default value is 30.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the Hy-
poglycemia Index values is returned. NA glucose values are omitted from the calculation of the
Hypoglycemia Index values.

Hypoglycemia Index is calculated by n/d ∗
∑

[(LLTR − hypoBGj)
b] Here n is the total number

of Blood Glucose measurements (excluding NA values), and hypoBGj is the jth Blood Glucose
measurement below the LLTR cutoff, b is an exponent, and d is a scaling factor.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
Hypoglycemia Index value is returned. If a vector of glucose values is passed, then a tibble object
with just the Hypoglycemia Index value is returned. as.numeric() can be wrapped around the latter
to output just a numeric value.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi: 10.1089/dia.2008.0132.

https://doi.org/10.1089/dia.2008.0132

igc 25

Examples

data(example_data_1_subject)
hypo_index(example_data_1_subject, LLTR = 60)

data(example_data_5_subject)
hypo_index(example_data_5_subject)
hypo_index(example_data_5_subject, LLTR = 70)

igc Calculate Index of Glycemic Control

Description

The function igc produces IGC values in a tibble object.

Usage

igc(data, LLTR = 80, ULTR = 140, a = 1.1, b = 2, c = 30, d = 30)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

LLTR Lower Limit of Target Range, default value is 80 mg/dL.

ULTR Upper Limit of Target Range, default value is 140 mg/dL.

a Exponent, generally in the range from 1.0 to 2.0, default value is 1.1.

b Exponent, generally in the range from 1.0 to 2.0, default value is 2.

c Scaling factor, to display Hyperglycemia Index, Hypoglycemia Index, and IGC
on approximately the same numerical range as measurements of HBGI, LBGI
and GRADE, default value is 30.

d Scaling factor,to display Hyperglycemia Index, Hypoglycemia Index, and IGC
on approximately the same numerical range as measurements of HBGI, LBGI
and GRADE, default value is 30.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the IGC values
is returned.

IGC is calculated by taking the sum of the Hyperglycemia Index and the Hypoglycemia index. See
hypo_index and hyper_index.

Value

A tibble object with two columns: subject id and corresponding IGC value.

26 in_range_percent

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi: 10.1089/dia.2008.0132.

Examples

data(example_data_1_subject)
igc(example_data_1_subject)
igc(example_data_1_subject, ULTR = 160)

data(example_data_5_subject)
igc(example_data_5_subject)
igc(example_data_5_subject, LLTR = 75, ULTR = 150)

iglu_shiny Run IGLU Shiny App

Description

Run IGLU Shiny App

Usage

iglu_shiny()

in_range_percent Calculate percentage in targeted value ranges

Description

The function in_range_percent produces a tibble object with values equal to the percentage of glu-
cose measurements in ranges of target values. The output columns correspond to subject id followed
by the target value ranges, and the rows correspond to the subjects. The values will be between 0
(no measurements) and 100 (all measurements).

Usage

in_range_percent(data, target_ranges = list(c(80, 200), c(70, 180), c(70, 140)))

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

target_ranges List of target value ranges wrapped in an r ’list’ structure. Default list of ranges
is ((80, 200), (70, 180), (70, 140)).

https://doi.org/10.1089/dia.2008.0132

iqr_glu 27

Details

A tibble object with 1 row for each subject, a column for subject id and column for each range of
target values is returned. NA’s will be omitted from the glucose values in calculation of percent.

in_range_percent will only work properly if the target_ranges argument is a list of paired values in
the format list(c(a1,b1), c(a2,b2), ...). The paired values can be ordered (min, max) or (max, min).
See the Examples section for proper usage.

Value

If a data.frame object is passed, then a tibble object with a column for subject id and then a column
for each target value is returned. If a vector of glucose values is passed, then a tibble object without
the subject id is returned. as.numeric() can be wrapped around the latter to output a numeric vector.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi: 10.1089/dia.2008.0132.

Examples

data(example_data_1_subject)

in_range_percent(example_data_1_subject)
in_range_percent(example_data_1_subject, target_ranges = list(c(50, 100), c(200,
300), c(80, 140)))

data(example_data_5_subject)

in_range_percent(example_data_5_subject)
in_range_percent(example_data_1_subject, target_ranges = list(c(60, 120), c(140,
250)))

iqr_glu Calculate glucose level iqr

Description

The function iqr_glu outputs the distance between the 25th percentile and the 25th percentile of the
glucose values in a tibble object.

Usage

iqr_glu(data)

https://doi.org/10.1089/dia.2008.0132

28 j_index

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the IQR values
is returned. NA glucose values are omitted from the calculation of the IQR.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
IQR value is returned. If a vector of glucose values is passed, then a tibble object with just the IQR
value is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

Examples

data(example_data_1_subject)
iqr_glu(example_data_1_subject)

data(example_data_5_subject)
iqr_glu(example_data_5_subject)

j_index Calculate J-index

Description

The function j_index produces J-Index values a tibble object.

Usage

j_index(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for J-Index values
is returned. NA glucose values are omitted from the calculation of the J-Index.

J-Index score is calculated by .001∗[mean(BG)+sd(BG)]2 where BG is the list of Blood Glucose
Measurements.

lbgi 29

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
J-Index value is returned. If a vector of glucose values is passed, then a tibble object with just the
J-Index value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

References

Wojcicki (1995) "J"-index. A new proposition of the assessment of current glucose control in
diabetic patients Hormone and Metabolic Research 27 .41-42, doi: 10.1055/s2007979906.

Examples

data(example_data_1_subject)
j_index(example_data_1_subject)

data(example_data_5_subject)
j_index(example_data_5_subject)

lbgi Calculate Low Blood Glucose Index (LBGI)

Description

The function lbgi produces LBGI values in a tibble object.

Usage

lbgi(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for LBGI values
is returned. NA glucose values are omitted from the calculation of the LBGI.

LBGI is calculated by 1/n∗
∑

(10∗fbg2i), where fbgi = min(0, 1.509∗(log(BGi)
1.084−5.381),

BG_i is the ith Blood Glucose measurement for a subject, and n is the total number of measurements
for that subject.

https://doi.org/10.1055/s-2007-979906

30 mad_glu

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
LBGI value is returned. If a vector of glucose values is passed, then a tibble object with just the
LBGI value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

References

Kovatchev et al. (2006) Evaluation of a New Measure of Blood Glucose Variability in, Diabetes
Diabetes care 29 .2433-2438, doi: 10.2337/dc061085.

Examples

data(example_data_1_subject)
lbgi(example_data_1_subject)

data(example_data_5_subject)
lbgi(example_data_5_subject)

mad_glu Calculate Mean Absolute Deviation (MAD)

Description

The function mad produces MAD values in a tibble object.

Usage

mad_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for MAD values
is returned. NA glucose values are omitted from the calculation of the MAD.

MAD is calculated by taking the median of the difference of the glucose readings from their median
mean(|gl −median(gl)|), where gl is the list of Blood Glucose measurements

https://doi.org/10.2337/dc06-1085

mage 31

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
MAD value is returned. If a vector of glucose values is passed, then a tibble object with just the
MAD value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

Author(s)

David Buchanan, Marielle Hicban

Examples

data(example_data_1_subject)
mad_glu(example_data_1_subject)

data(example_data_5_subject)
mad_glu(example_data_5_subject)

mage Calculate Mean Amplitude of Glycemic Excursions

Description

The function mage produces MAGE values in a tibble object.

Usage

mage(data, sd_multiplier = 1)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

sd_multiplier A numeric value that can change the sd value used to determine size of glycemic
excursions used in the calculation.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the MAGE
values is returned. NA glucose values are omitted from the calculation of MAGE.

MAGE is calculated by taking the mean of absolute differences (between each value and the mean)
that are greater than the standard deviation. A multiplier can be added to the standard deviation by
the sd_multiplier argument.

32 mean_glu

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
MAGE value is returned. If a vector of glucose values is passed, then a tibble object with just the
MAGE value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

References

Service, F. J. & Nelson, R. L. (1980) Characteristics of glycemic stability. Diabetes care 3 .58-62,
doi: 10.2337/diacare.3.1.58.

Examples

data(example_data_1_subject)
mage(example_data_1_subject)
mage(example_data_1_subject, sd_multiplier = 2)

data(example_data_5_subject)
mage(example_data_5_subject, sd_multiplier = .9)

mean_glu Calculate mean glucose level

Description

The function mean_glu is a wrapper for the base function mean(). Output is a tibble object with
subject id and mean values.

Usage

mean_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the mean
values is returned. NA glucose values are omitted from the calculation of the mean.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
mean value is returned. If a vector of glucose values is passed, then a tibble object with just the
mean value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

https://doi.org/10.2337/diacare.3.1.58

median_glu 33

Examples

data(example_data_1_subject)
mean_glu(example_data_1_subject)

data(example_data_5_subject)
mean_glu(example_data_5_subject)

median_glu Calculate median glucose level

Description

The function median_glu is a wrapper for the base function median(). Output is a tibble object with
subject id and median values.

Usage

median_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the median
values is returned. NA glucose values are omitted from the calculation of the median.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
median value is returned. If a vector of glucose values is passed, then a tibble object with just the
median value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

Examples

data(example_data_1_subject)
median_glu(example_data_1_subject)

data(example_data_5_subject)
median_glu(example_data_5_subject)

34 modd

modd Calculate mean difference between glucose values obtained at the
same time of day (MODD)

Description

The function modd produces MODD values in a tibble object.

Usage

modd(data, lag = 1, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".
lag Integer indicating which lag (# days) to use. Default is 1.
tz A character string specifying the time zone to be used. System-specific (see

as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the MODD
values is returned.

Missing values will be linearly interpolated when close enough to non-missing values.

MODD is calculated by taking the mean of absolute differences between measurements at the same
time 1 day away, or more if lag parameter is set to an integer > 1.

Value

A tibble object with two columns: subject id and corresponding MODD value.

References

Service, F. J. & Nelson, R. L. (1980) Characteristics of glycemic stability. Diabetes care 3 .58-62,
doi: 10.2337/diacare.3.1.58.

Examples

data(example_data_1_subject)
modd(example_data_1_subject)
modd(example_data_1_subject, lag = 2)

data(example_data_5_subject)
modd(example_data_5_subject, lag = 2)

https://doi.org/10.2337/diacare.3.1.58

m_value 35

m_value Calculate the M-value

Description

Calculates the M-value of Schlichtkrull et al. (1965) for each subject in the data, where the M-value
is the mean of the logarithmic transformation of the deviation from a reference value. Produces a
tibble object with subject id and M-values.

Usage

m_value(data, r = 90)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

r A reference value corresponding to basal glycemia in normal subjects; default
is 90 mg/dL.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the M-values
is returned. NA glucose values are omitted from the calculation of the M-value.

M-value is computed by averaging the transformed glucose values, where each transformed value
is equal to |1000 ∗ log10(glucose/100)|3

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
M-value is returned. If a vector of glucose values is passed, then a tibble object with just the M-value
is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

References

Schlichtkrull J, Munck O, Jersild M. (1965) The M-value, an index of blood-sugar control in dia-
betics. Acta Medica Scandinavica 177 .95-102. doi: 10.1111/j.09546820.1965.tb01810.x.

Examples

data(example_data_5_subject)

m_value(example_data_5_subject)
m_value(example_data_5_subject, r = 100)

https://doi.org/10.1111/j.0954-6820.1965.tb01810.x

36 plot_glu

plot_glu Plot time series and lasagna plots of glucose measurements

Description

The function plot_glu supports several plotting methods for both single and multiple subject data.

Usage

plot_glu(
data,
plottype = c("tsplot", "lasagna"),
datatype = c("all", "average", "single"),
lasagnatype = c("unsorted", "timesorted"),
LLTR = 80,
ULTR = 140,
subjects = NULL,
tz = ""

)

Arguments

data DataFrame with column names ("id", "time", and "gl").

plottype String corresponding to the desired plot type. Options are ’tsplot’ for a time
series plot and ’lasagna’ for a lasagna plot. See the ‘lasagnatype‘ parameter for
further options corresponding to the ’lasagna’ ‘plottype‘. Default is ’tsplot’.

datatype String corresponding to data aggregation used for plotting, currently supported
options are ’all’ which plots all glucose measurements within the first maxd
days for each subject, and ’average’ which plots average 24 hour glucose values
across days for each subject

lasagnatype String corresponding to plot type when usingdatatype = "average", currently
supported options are ’unsorted’ for an unsorted lasagna plot, ’timesorted’ for a
lasagna plot with glucose values sorted within each time point across subjects,
and ’‘subjectsorted‘’ for a lasagna plot with glucose values sorted within each
subject across time points.

LLTR Lower Limit of Target Range, default value is 80 mg/dL.

ULTR Upper Limit of Target Range, default value is 140 mg/dL.

subjects String or list of strings corresponding to subject names in ’id’ column of data.
Default is all subjects.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

plot_lasagna 37

Details

For the default option ’tsplot’, a time series graph for each subject is produced with hypo- and
hyperglycemia cutoffs shown as horizontal red lines. The time series plots for all subjects chosen
(all by default) are displayed on a grid.

The ’lasagna’ plot type works best when the datatype argument is set to average.

Value

Any output from the plot object

Examples

data(example_data_1_subject)
plot_glu(example_data_1_subject)

data(example_data_5_subject)
plot_glu(example_data_5_subject, subjects = 'Subject 2')
plot_glu(example_data_5_subject, plottype = 'tsplot', tz = 'EST', LLTR = 70, ULTR= 150)
plot_glu(example_data_5_subject, plottype = 'lasagna', lasagnatype = 'timesorted')

plot_lasagna Lasagna plot of glucose values for multiple subjects

Description

Lasagna plot of glucose values for multiple subjects

Usage

plot_lasagna(
data,
datatype = c("all", "average"),
lasagnatype = c("unsorted", "timesorted", "subjectsorted"),
maxd = 14,
limits = c(50, 500),
midpoint = 105,
LLTR = 80,
ULTR = 140,
dt0 = NULL,
inter_gap = 60,
tz = ""

)

38 plot_lasagna

Arguments

data DataFrame object with column names "id", "time", and "gl".

datatype String corresponding to data aggregation used for plotting, currently supported
options are ’all’ which plots all glucose measurements within the first maxd
days for each subject, and ’average’ which plots average 24 hour glucose values
across days for each subject

lasagnatype String corresponding to plot type when usingdatatype = "average", currently
supported options are ’unsorted’ for an unsorted lasagna plot, ’timesorted’ for a
lasagna plot with glucose values sorted within each time point across subjects,
and ’‘subjectsorted‘’ for a lasagna plot with glucose values sorted within each
subject across time points.

maxd For datatype "all", maximal number of days to be plotted from the study. The
default value is 14 days (2 weeks).

limits The minimal and maximal glucose values for coloring grid which is gradient
from blue (minimal) to red (maximal), see scale_fill_gradient2)

midpoint The glucose value serving as midpoint (white) of the diverging gradient scale
(see scale_fill_gradient2). The default value is 125 mg/dL. The values
above are colored in red, and below in blue.

LLTR Lower Limit of Target Range, default value is 80 mg/dL.

ULTR Upper Limit of Target Range, default value is 140 mg/dL.

dt0 The time frequency for interpolated aligned grid in minutes, the default will
match the CGM meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation of NA glucose val-
ues. The values will not be interpolated between the glucose measurements that
are more than inter_gap minutes apart. The default value is 60 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Value

A ggplot object corresponding to lasagna plot

References

Swihart et al. (2010) Lasagna Plots: A Saucy Alternative to Spaghetti Plots, Epidemiology 21(5),
621-625, doi: 10.1097/EDE.0b013e3181e5b06a

Examples

plot_lasagna(example_data_5_subject, datatype = "average", lasagnatype = 'timesorted', tz = "EST")
plot_lasagna(example_data_5_subject, lasagnatype = "subjectsorted", LLTR = 100, tz = "EST")

https://doi.org/10.1097/EDE.0b013e3181e5b06a

plot_lasagna_1subject 39

plot_lasagna_1subject Lasagna plot of glucose values for 1 subject aligned across times of
day

Description

Lasagna plot of glucose values for 1 subject aligned across times of day

Usage

plot_lasagna_1subject(
data,
lasagnatype = c("unsorted", "timesorted", "daysorted"),
limits = c(50, 500),
midpoint = 105,
LLTR = 80,
ULTR = 140,
dt0 = NULL,
inter_gap = 60,
tz = ""

)

Arguments

data DataFrame object with column names "id", "time", and "gl".

lasagnatype String corresponding to plot type, currently supported options are ’unsorted’
for an unsorted single-subject lasagna plot, ’timesorted’ for a lasagna plot with
glucose values sorted within each time point across days, and ’daysorted’ for a
lasagna plot with glucose values sorted within each day across time points.

limits The minimal and maximal glucose values for coloring grid which is gradient
from blue (minimal) to red (maximal), see scale_fill_gradient2)

midpoint The glucose value serving as midpoint (white) of the diverging gradient scale
(see scale_fill_gradient2). The default value is 125 mg/dL. The values
above are colored in red, and below in blue.

LLTR Lower Limit of Target Range, default value is 80 mg/dL.

ULTR Upper Limit of Target Range, default value is 140 mg/dL.

dt0 The time frequency for interpolated aligned grid in minutes, the default will
match the CGM meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation of NA glucose val-
ues. The values will not be interpolated between the glucose measurements that
are more than inter_gap minutes apart. The default value is 60 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

40 plot_roc

Value

A ggplot object corresponding to lasagna plot

References

Swihart et al. (2010) Lasagna Plots: A Saucy Alternative to Spaghetti Plots, Epidemiology 21(5),
621-625, doi: 10.1097/EDE.0b013e3181e5b06a

Examples

plot_lasagna_1subject(example_data_1_subject)
plot_lasagna_1subject(example_data_1_subject, lasagnatype = 'timesorted')
plot_lasagna_1subject(example_data_1_subject, lasagnatype = 'daysorted')

plot_roc Plot time series of glucose colored by rate of change

Description

The function plot_roc produces a time series plot of glucose values colored by categorized rate of
change values

Usage

plot_roc(data, subjects = NULL, timelag = 15, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

subjects String or list of strings corresponding to subject names in ’id’ column of data.
Default is all subjects.

timelag Integer indicating the time period (# minutes) over which rate of change is cal-
culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

https://doi.org/10.1097/EDE.0b013e3181e5b06a

quantile_glu 41

Details

For the default, a time series is produced for each subject in which the glucose values are plotted
and colored by ROC categories defined as follows. The breaks for the categories are: c(-Inf, -3,
-2, -1, 1, 2, 3, Inf) where the glucose is in mg/dl and the ROC values are in mg/dl/min. A ROC of
-5 mg/dl/min will thus be placed in the first category and colored accordingly. The breaks for the
categories come from the reference paper below.

Value

A time series of glucose values colored by ROC categories per subject

Author(s)

Elizabeth Chun, David Buchanan

References

Klonoff, D. C., & Kerr, D. (2017) A Simplified Approach Using Rate of Change Arrows to Ad-
just Insulin With Real-Time Continuous Glucose Monitoring. Journal of Diabetes Science and
Technology 11(6) 1063-1069, doi: 10.1177/1932296817723260.

Examples

data(example_data_1_subject)
plot_roc(example_data_1_subject)

data(example_data_5_subject)
plot_roc(example_data_5_subject, subjects = 'Subject 5')

quantile_glu Calculate glucose level quantiles

Description

The function quantile_glu is a wrapper for the base function quantile(). Output is a tibble object
with columns for subject id and each of the quantiles.

Usage

quantile_glu(data, quantiles = c(0, 25, 50, 75, 100))

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

quantiles List of quantile values between 0 and 100.

https://doi.org/10.1177/1932296817723260

42 range_glu

Details

A tibble object with 1 row for each subject, a column for subject id and a column for each quantile
is returned. NA glucose values are omitted from the calculation of the quantiles.

The values are scaled from 0-1 to 0-100 to be consistent in output with above_percent, below_percent,
and in_range_percent.

The command quantile_glu(...) / 100 will scale each element down from 0-100 to 0-1.

Value

If a data.frame object is passed, then a tibble object with a column for subject id and then a column
for each quantile value is returned. If a vector of glucose values is passed, then a tibble object
without the subject id is returned. as.numeric() can be wrapped around the latter to output a numeric
vector.

Examples

data(example_data_1_subject)

quantile_glu(example_data_1_subject)
quantile_glu(example_data_1_subject, quantiles = c(0, 33, 66, 100))

data(example_data_5_subject)

quantile_glu(example_data_5_subject)
quantile_glu(example_data_5_subject, quantiles = c(0, 10, 90, 100))

range_glu Calculate glucose level range

Description

The function range_glu outputs the distance between minimum and maximum glucose values per
subject in a tibble object.

Usage

range_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the range
values is returned. NA glucose values are omitted from the calculation of the range.

roc 43

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
range value is returned. If a vector of glucose values is passed, then a tibble object with just the
range value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

Examples

data(example_data_1_subject)
range_glu(example_data_1_subject)

data(example_data_5_subject)
range_glu(example_data_5_subject)

roc Calculate the Rate of Change at each time point (ROC)

Description

The function roc produces rate of change values in a tibble object.

Usage

roc(data, timelag = 15, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

timelag Integer indicating the time period (# minutes) over which rate of change is cal-
culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

44 sd_glu

Details

A tibble object with a column for subject id and a column for ROC values is returned. A ROC value
is returned for each time point for all the subjects. Thus multiple rows are returned for each subject.
If the rate of change cannot be calculated, the function will return NA for that point.

The glucose values are linearly interpolated over a time grid starting at the beginning of the first day
of data and ending on the last day of data. Because of this, there may be many NAs at the beginning
and the end of the roc values for each subject. These NAs are a result of interpolated time points
that do not have recorded glucose values near them because recording had either not yet begun for
the day or had already ended.

The ROC is calculated as BG(ti)−BG(ti−1)
ti−ti−1

where BG_i is the Blood Glucose measurement at time
t_i and BG_i-1 is the Blood Glucose measurement at time t_i-1. The time difference between the
points, t_i - t_i-1, is selectable and set at a default of 15 minutes.

Value

A tibble object with two columns: subject id and rate of change values

Author(s)

Elizabeth Chun, David Buchanan

References

Clarke et al. (2009) Statistical Tools to Analyze Continuous Glucose Monitor Data, Diabetes Dia-
betes Technology and Therapeutics 11 S45-S54, doi: 10.1089/dia.2008.0138.

Examples

data(example_data_1_subject)
roc(example_data_1_subject)
roc(example_data_1_subject, timelag = 10)

data(example_data_5_subject)
roc(example_data_5_subject)
roc(example_data_5_subject, timelag = 10)

sd_glu Calculate sd glucose level

Description

The function sd_glu is a wrapper for the base function sd(). Output is a tibble object with subject id
and sd values.

https://doi.org/10.1089/dia.2008.0138

sd_measures 45

Usage

sd_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the sd values
is returned. NA glucose values are omitted from the calculation of the sd.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
sd value is returned. If a vector of glucose values is passed, then a tibble object with just the sd value
is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

Examples

data(example_data_1_subject)
sd_glu(example_data_1_subject)

data(example_data_5_subject)
sd_glu(example_data_5_subject)

sd_measures Calculate SD subtypes

Description

The function sd_measures produces SD subtype values in a tibble object with a row for each subject
and columns corresponding to id followed by each SD subtype.

Usage

sd_measures(data,dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

46 sd_measures

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for each SD
subtype values is returned.

Missing values will be linearly interpolated when close enough to non-missing values.

1. SdW- vertical within days:
Calculated by first taking the standard deviation of each day’s glucose measurements, then
taking the mean of all the standard deviations. That is, for d days we compute SD_1 ... SD_d
daily standard deviations and calculate 1/d ∗

∑
[(SDi)]

2. SdHHMM - between time points:
Calculated by taking the mean glucose values at each time point in the grid across days, and
taking the standard deviation of those mans. That is, for t time points we compute X_t means
for each time point and then compute SD([X_1, X_2, ... X_t]).

3. SdWSH - within series:
Calculated by taking the hour-long intervals starting at every point in the interpolated grid,
computing the standard deviation of the points in each hour-long interval, and then finding the
mean of those standard deviations. That is, for n time points compute SD_1 ... SD_n, where
SD_i is the standard deviation of the set [SD_i, SD_i+2, ... SD_k-1] where SD_k is the first
measurement more than an hour later than SD_1. Then, take 1/n ∗

∑
[(SDi)].

4. SdDM - horizontal sd:
Calculated by taking the daily mean glucose values, and then taking the standard deviation of
those daily means. That is, for d days we take X_1 ... X_d daily means, and then compute
SD([X_1, X_2, ... X_d]).

5. SdB - between days, within timepoints:
Calculated by taking the standard deviation of the glucose values across days for each time
point, and then taking the mean of those standard deviations. That is, for t time points take
SD_1 ... SD_t standard deviations, and then compute 1/t ∗

∑
[(SDi)]

6. SdBDM - between days, within timepoints, corrected for changes in daily means: Calculated
by subtracting the daily mean from each glucose value, then taking the standard deviation of
the corrected glucose values across days for each time point, and then taking the mean of those
standard deviations. That is, for t time points take SD_1 ... SD_t standard deviations, and then
compute 1/t ∗

∑
[(SDi)]. where SD_i is the standard deviation of d daily values at the 1st

time point, where each value is the dth measurement for the ith time point subtracted by the
mean of all glucose values for day d.

Value

A tibble object with a column for id and a column for each of the six SD subtypes.

sd_roc 47

References

Rodbard (2009) New and Improved Methods to Characterize Glycemic Variability Using Con-
tinuous Glucose Monitoring Diabetes Technology and Therapeutics 11 .551-565, doi: 10.1089/
dia.2009.0015.

Examples

data(example_data_1_subject)
sd_measures(example_data_1_subject)

sd_roc Calculate the standard deviation of the rate of change

Description

The function sd_roc produces the standard deviation of the rate of change values in a tibble object.

Usage

sd_roc(data, timelag = 15, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".
timelag Integer indicating the time period (# minutes) over which rate of change is cal-

culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with one row for each subject, a column for subject id and a column for the standard
deviation of the rate of change.

When calculating rate of change, missing values will be linearly interpolated when close enough to
non-missing values.

Calculated by taking the standard deviation of all the ROC values for each individual subject. NA
rate of change values are omitted from the standard deviation calculation.

https://doi.org/10.1089/dia.2009.0015
https://doi.org/10.1089/dia.2009.0015

48 summary_glu

Value

A tibble object with two columns: subject id and standard deviation of the rate of change values for
each subject.

Author(s)

Elizabeth Chun, David Buchanan

References

Clarke et al. (2009) Statistical Tools to Analyze Continuous Glucose Monitor Data, Diabetes Dia-
betes Technology and Therapeutics 11 S45-S54, doi: 10.1089/dia.2008.0138.

Examples

data(example_data_1_subject)
sd_roc(example_data_1_subject)
sd_roc(example_data_1_subject, timelag = 10)

data(example_data_5_subject)
sd_roc(example_data_5_subject)
sd_roc(example_data_5_subject, timelag = 10)

summary_glu Calculate summary glucose level

Description

The function summary_glu is a wrapper for the base function summary(). Output is a tibble object
with subject id and the summary value: Minimum, 1st Quantile, Median, Mean, 3rd Quantile and
Max.

Usage

summary_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for each of
summary values is returned. NA glucose values are omitted from the calculation of the summary
values.

https://doi.org/10.1089/dia.2008.0138

summary_glu 49

Value

If a data.frame object is passed, then a tibble object with a column for subject id and then a column
for each summary value is returned. If a vector of glucose values is passed, then a tibble object
without the subject id is returned. as.numeric() can be wrapped around the latter to output a numeric
vector with values in order of Min, 1st Quantile, Median, Mean, 3rd Quantile and Max.

Examples

data(example_data_1_subject)
summary_glu(example_data_1_subject)

data(example_data_5_subject)
summary_glu(example_data_5_subject)

Index

∗ datasets
example_data_1_subject, 13
example_data_5_subject, 14

above_percent, 3
active_percent, 4
adrr, 5
as.POSIXct, 8, 9, 11, 22, 34, 36, 38–40, 43,

46, 47
auc, 6

below_percent, 7

CGMS2DayByDay, 8
conga, 9
cv_glu, 10
cv_measures, 11

ea1c, 12
example_data_1_subject, 13
example_data_5_subject, 13, 14

gmi, 14
grade, 15
grade_eugly, 16
grade_hyper, 17
grade_hypo, 18
gvp, 19

hbgi, 20
hist_roc, 21
hyper_index, 22, 25
hypo_index, 24, 25

igc, 25
iglu_shiny, 26
in_range_percent, 26
iqr_glu, 27

j_index, 28

lbgi, 29

m_value, 35
mad_glu, 30
mage, 31
mean_glu, 32
median_glu, 33
modd, 34

plot_glu, 36
plot_lasagna, 37
plot_lasagna_1subject, 39
plot_roc, 22, 40

quantile_glu, 41

range_glu, 42
roc, 43

scale_fill_gradient2, 38, 39
sd_glu, 44
sd_measures, 45
sd_roc, 47
summary_glu, 48

50

	above_percent
	active_percent
	adrr
	auc
	below_percent
	CGMS2DayByDay
	conga
	cv_glu
	cv_measures
	ea1c
	example_data_1_subject
	example_data_5_subject
	gmi
	grade
	grade_eugly
	grade_hyper
	grade_hypo
	gvp
	hbgi
	hist_roc
	hyper_index
	hypo_index
	igc
	iglu_shiny
	in_range_percent
	iqr_glu
	j_index
	lbgi
	mad_glu
	mage
	mean_glu
	median_glu
	modd
	m_value
	plot_glu
	plot_lasagna
	plot_lasagna_1subject
	plot_roc
	quantile_glu
	range_glu
	roc
	sd_glu
	sd_measures
	sd_roc
	summary_glu
	Index

